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Abstract

One of the main reasons for the difficulty of hardware verifi-
cation is that hardware platforms are typically nondeterministic at
clock-cycle granularity. Uninitialized state elements, I/O, and tim-
ing variations on high-speed buses all introduce nondeterminism
that causes different behavior on different runs starting from the
same initial state. To improve our ability to debug hardware, we
would like to completely eliminate nondeterminism.

This paper introduces theCycle-Accurate Deterministic RE-
play (CADRE) architecture, which cost-effectively makes a board-
level computer cycle-accurate deterministic. We characterize the
sources of nondeterminism in computers and show how to address
them. In particular, we introduce a novel scheme to ensure de-
terministic communication on source-synchronous buses that cross
clock-domain boundaries. Experiments show that CADRE on a
4-way multiprocessor server enables cycle-accurate deterministic
execution of one-second intervals with modest buffering require-
ments (around 200MB) and minimal performance loss (around
1%). Moreover, CADRE has modest hardware requirements.

1. Introduction

The complexity of computer hardware continues to grow. In
current processor designs, verification typically consumes 50-70%
of the design effort [4]. As a result, verification progress often de-
termines the product development schedule. Meanwhile, ITRS [10]
predicts a continued increase in design complexity and resulting
verification effort. Consequently, it is crucial to develop techniques
that ease hardware verification and debugging.

Like software debugging, the process of removing a hardware
bug typically involves several loops of “iterative debugging”. First,
a bug is detected. Then, in each iteration, the hardware is returned
to some state preceding the fault and the faulting sequence is re-
executed. By monitoring internal signals and states during the re-
executions, the designer gains an understanding of the bug.

Iterative debugging is most effective when the platform being
debugged supportscycle-accurate deterministicexecution. With
deterministic execution, it is possible to replay the original fault-
ing execution cycle-by-cycle. As long as re-execution starts from
the same initial state as the original execution and is supplied with
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the same inputs at the same cycles, all the events of interest will
re-occur at exactly the same cycles.

Cycle-accurate deterministic execution is easy to support in RTL
simulation environments. However, RTL simulations are slow —
about 100 cycles per second for a large design. As a result, hard-
ware designers often have to run tests on real hardware at native
speed. Unfortunately, board-level computer hardware does not
ordinarily support cycle-accurate deterministic execution, which
makes debugging much more difficult.

In this paper, we introduce theCycle-Accurate Determinis-
tic REplay(CADRE) architecture, which cost-effectively makes a
board-level computer cycle-deterministic — including processors,
buses, memory, chipset, and I/O devices. To design CADRE, we
identify the main sources of nondeterminism in a board-level com-
puter. Then, we present a novel scheme that circumvents one of
the most difficult sources of nondeterminism, namely the timing
of messages on source-synchronous buses that cross clock-domain
boundaries. The proposed solution completely hides this nondeter-
minism at the cost of a small latency penalty and modest hardware.
We construct CADRE by composing this scheme with other deter-
minism and checkpointing techniques, many of which are already
known.

We show that CADRE facilitates large windows of deterministic
execution (one second or more) with modest storage overhead and
negligible performance loss. In particular, experiments indicate that
extending a four-way multiprocessor server with CADRE enables
cycle-accurate deterministic execution of one-second intervals with
buffering requirements of around 200MB and performance loss of
around 1%.

CADRE has modest hardware requirements compared to cur-
rent cycle-deterministic schemes. Moreover, its long intervals of
deterministic execution are a substantial improvement over the tens
of milliseconds between checkpoints achieved by current schemes.
Long intervals enable verification engineers to effectively use na-
tive re-execution to debug hardware problems. Finally, CADRE’s
cost-effectiveness may enable its use in systems in the field.

This paper is organized as follows: Section 2 describes the
sources of nondeterminism, Section 3 presents our scheme for mak-
ing buses deterministic, Section 4 presents the CADRE architec-
ture, Section 5 evaluates it, and Section 6 presents related work.

2. Sources of Nondeterminism

Our reference system is a board-level computer composed of
componentsconnected bybuses, where a component is defined to
have a single clock domain. In this paper, we consider the follow-
ing components: the processor chip (which includes several cores),



the memory controller, the main memory, and the I/O controller.
The buses of interest are those that connect components in differ-
ent clock domains. While a bus could connect several components,
all of the buses of interest considered in this paper happen to be
point-to-point.

In this environment, assume that each component has a counter
driven from its local clock. Aninput to componentM is determin-
istic if it is guaranteed to arrive at the same count value inM on
every run that starts from the same initial state. Likewise, anoutput
of M is deterministic if it is always generated at the same count
value inM . A componentis deterministic if determinism of all its
inputs implies determinism of all its outputs. Finally, asystemis
deterministic if all of its components and buses are deterministic.

This section enumerates the main sources of nondeterminism in
CPUs, memory systems, IO systems, and buses. It also describes
other effects.

2.1. Nondeterminism in CPUs

The traditional sources of nondeterminism in CPUs are the re-
sult of how the logic is designed. The principal sources of logic
nondeterminism are: (i) random replacement policies in caches, (ii)
random request selection in arbiters, and (iii) uninitialized state el-
ements (i.e., elements in the Verilog ‘X’ state). In general, these
sources can be eliminated with appropriate design of RTL code, for
example as described by Bening and Foster [5].

Novel dynamic techniques for power saving such as clock duty
cycle modulation and voltage-frequency scaling (DVFS) also con-
tribute to nondeterminism. They affect the timing of events in the
core. On the other hand, dynamic clock gating can be designed
to maintain determinism. For example, the Pentium 4 is designed
such that a hardware unit’s outputs are cycle-for-cycle equivalent
irrespective of whether the unit is clock gated or not [6].

2.2. Nondeterminism in Memory Systems

The cores of synchronous DRAM memory chips have fixed la-
tencies for the operations and, therefore, can be considered fully
deterministic. This is reasonable because the control logic in the
DRAM chip is relatively simple. However, there is more to the
memory system than just the DRAM chips; a good deal of the mem-
ory’s “intelligence” is located in the memory controller. The mem-
ory controller is typically either a part of the chipset or is integrated
with the processor core. It is responsible for scheduling memory
requests and managing DRAM refresh and ECC scrubbing opera-
tions.

Of these operations, DRAM refresh and ECC scrubbing are
sources of nondeterminism. This was pointed out by verification
engineers working on the Intel Itanium-2 processor [13]. The rea-
son is that refresh is typically implemented as a task that runs oppor-
tunistically depending on the memory conditions [3]. Therefore, as
we re-execute an application, the timing of refreshes changes. The
ECC scrubbing task in the memory controller contributes to nonde-
terminism for the same reason.

2.3. Nondeterminism in IO and Interrupts

The timing of IO operations and interrupts is notoriously unpre-
dictable. For example, hard disks have mechanical components that
introduce non-deterministic seek times and rotational delays. The

timing of events from human-interface devices and network inter-
faces is equally unpredictable.

2.4. Nondeterminism in Buses

The buses that cross clock domains in a computer, for example
as they connect different chips together, are a major source of non-
determinism. These buses are often source-synchronous [8], which
means that the transmitter generates and transmits a clock signal
that travels with the data to the receiver. One popular example is
HyperTransport [11]. In these buses, receiving a message occurs in
two steps (Figure 1). First, the rising edge of the transmitter clock
signal latches the data into a holding queue in the bus interface of
the receiver. We refer to this event as thearrival of the message.
Some time later, normally on the next rising edge of the receiver’s
core clock, the receiver removes the data from the queue and sub-
mits them for processing. We refer to this event as theprocessing
of the message.

Data

Receiver
Core

Core

Bus Interf.

Clock

Holding Queue
Transmitter

Data
Fr

om
T

ra
ns

m
itt

er

Clock

Processing
Arrival

Figure 1. Arrival and processing of a message at the receiver.

The causes of nondeterminism arejitter anddrift, which change
the arrival times of clock and data pulses at the receiver. They
are the inevitable result of physical and electrical processes such
as temperature variations, voltage variations, accumulated phase
error in PLLs, channel cross talk, and inter-symbol interference
[8, 11, 17]. All high-speed communication specifications must
therefore include provisions for tolerating the uncertainty in signal
arrival times, but they do not usually guarantee determinism.

Figure 2 illustrates how uncertainty in the arrival time of the
transmitter clock can give rise to nondeterminism at the receiver.
Due to drift and jitter, the receiver may see the rising edge of the
transmitter clock anywhere in the hatched interval. If the receiver
processes the message on the first rising edge of the core clock af-
ter arrival, then the processing time is nondeterministic because it
depends on the arrival time.
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Figure 2. Nondeterministic and deterministic message pro-
cessing.



Current systems experience nondeterminism. For example, the
HyperTransport protocol assumes a sampling error of one cycle
even for very short buses [11].

Even high-precision chip testers will find it difficult to maintain
determinism as design frequencies increase. The arrival time uncer-
tainty for testers is expressed in terms of the EPA (Edge Placement
Accuracy), which is defined as the3σ variation in the difference
between the actual and intended arrival times of a signal transition
at the receiver [15]. Commercial test equipment typically has a 25
ps EPA [19], but even with such high accuracy, the probability of
nondeterminism over a long run is substantial. Figure 3 shows, for
a range of EPAs, the probability that a receiver with a given core
clock frequency processes at least one message in the wrong clock
cycle, as it re-executes a run of one million messages. Even with
a tester-quality 25 ps EPA, designs clocked at 5 GHz or higher are
likely to experience nondeterminism.
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Figure 3. Probability of nondeterminism after one million
messages as a function of the EPA for different receiver core
clock frequencies.

2.5. Other Issues: Circuit Faults

Another source of nondeterminism is circuit faults. Early silicon
for modern high-speed processors can have difficult-to-diagnose
signal integrity problems, which can manifest as intermittent fail-
ures. The CADRE architecture does not guarantee reproducibility
of circuit-level electrical faults. However, by making the other as-
pects of the system cycle-deterministic, CADRE can create similar
electrical conditions during the re-execution and, therefore,helpre-
produce these faults.

Similarly, a Single Event Upset (SEU) fault due to a
particle strike can prevent CADRE from re-executing cycle-
deterministically. However, if we can detect SEU faults, it could
be possible to record them during the original execution and mimic
them during re-execution. These issues are beyond the scope of this
paper.

3. Enforcing Determinism in Buses

In a computer’s source-synchronous buses, the transmitter and
receiver clocks typically have a bounded skew. Specifically, since
the two clocks are typically derived from a common reference
clock, the ratio of their frequencies is constant. However, their
relative phase changes with time (within bounds) due to physical

and electrical effects1. For these very common bus scenarios, we
propose an approach to make the bus transfer fully deterministic.

To understand the approach, consider Figure 1. The idea is to
delay theprocessingof a message at the receiver until the last pos-
sible core clock cycle at which the message could have arrived. The
correct processing time is shown in Figure 2 as “deterministic pro-
cessing”. The cost of this approach is a very small increase in the
communication latency for many of the messages sent.

To determine the delay that we should enforce, consider a sys-
tem where the transmitterT and receiverR run at frequenciesfT

andfR, respectively. Both transmitter and receiver have adomain-
clockcounter, which is an up-counter driven by the local clock sig-
nal. Such counters are reset with a global signal at machine check-
points — in our case, at roughly every second.

Let us first consider the case whenfT = fR. Let nT andnR be
the transmitter’s and receiver’s domain-clock counts, respectively,
at a given time. Such counts can differ by a bounded value. Let us
assume that their difference isnR−nT ∈ [p, q]. Let us also assume
that the transmission delay of a message in the bus (measured in
domain-clock counts) is bounded by[d1, d2]. The values ofp, q,
d1 and d2 are known. Now assume that the transmitter sends a
message at countxT of its domain-clock counter. At the same time,
the receiver’s domain-clock count isxR. The messagearrivesat the
receiver at countyR of its domain-clock counter. From the previous
discussion,yR is:

yR = xT + [d1 + p, d2 + q] = xT + [θ1, θ2] (1)

Figure 4(a) shows a receiver timeline and two possible transmitter
timelines: one is the case with the smallest possible count difference
betweenyR andxT , and the other is the case with the largest. We
call θ2 − θ1 theUncertainty Interval.
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Figure 4. Timing of transmitter and receiver events.

To ensure deterministic timing, our approach requires the trans-
mitter to send some count information to the receiver. With this
information, the receiver can determine when the message was sent
(xT ). Then, the receiver simply computesxT + θ2 and delays the

1These clocks where the relative frequency does not change but the rel-
ative phase may change within bounds are called mesochronous [8].



processingof the message until that point, therefore ensuring de-
terminism. Consequently, the Uncertainty Interval is the maximum
delay that we need to add to a message to ensure bus determinism.

In the following, we present two ways to support our approach.
The first one involves sending count information with every mes-
sage; the second one sends count information at every cycle. Later,
we consider the case offT 6= fR and present a hardware imple-
mentation.

3.1. Sending Information with Every Message

A simple approach is for the transmitter to attach the current
value of its domain-clock count (xT ) to every message. This ap-
proach, calledFullCount, requires adding many bits to each mes-
sage. For instance, if the interval between checkpoints is 1 second
andfR is 1GHz, then the count takes at least 30 bits. For narrow
buses, this adds multiple cycles to each message. Still, for long
messages like memory lines, adding four additional bytes makes
little difference.

An alternative approach calledOffsetis to divide the time into
windows of a fixed number of cycles. The transmitter attaches to
every message only the currentoffsetcount (ρ) from the beginning
of the current window (Figure 4(b)). For this approach to work, the
Window SizeW must be such that, givenρ, the receiver is able to
reconstruct without ambiguity the window number (NW ) wherexT

is found. Then, on reception ofρ, the receiver can reconstructxT

asNW ×W + ρ.
In practice, any window size larger than the Uncertainty Interval

will do:
W = θ2 − θ1 + k (2)

wherek is an integer larger than zero. In our initial design, we use
k = 1. To see why this works, consider Figure 4(b). The figure
shows two examples of transmission timesxT that are in between
the earliest and the latest possible values. AnyxT has an associated
ρ = xT modW that gives the offset from the beginning of its win-
dow. Since the Uncertainty Interval is smaller thanW , it is either
fully inside a window or strides two windows. In the latter case, the
values ofρ in the earlier window are strictly greater than the values
of ρ in the later window. Consequently, in all cases,yR−θ1−ρ lies
in the same window asxT . This means thatb(yR − θ1 − ρ)/W c
is xT ’s window numberNW . GivenNW , the receiver reconstructs
xT asNW × W + ρ. The receiver then processes the message at
countzR = xT + θ2.

This approach has the advantage thatρ needs very few bits.
For example, as per the HyperTransport protocol for very short
buses [11], we can assume an Uncertainty Interval equal to one.
Then, we can setW to two and, sinceρ only needslog2 W bits, we
only need one bit forρ. Even if we assume an Uncertainty Interval
of three cycles, we only need two bits forρ. In this case, we can
either add two extra bits to the bus or consume only one extra cycle
per message even for very narrow buses.

3.2. Sending Information At Every Cycle

In a different approach calledPulsing, the transmitter clock cy-
cles continuously. The receiver has one additional counter that is
incremented at each pulse of the transmitter clock. With this infor-
mation, the receiver identifies each cycle. When a message arrives
at the receiver, the receiver is able to determine at what cycle count

xT the transmitter sent the message. KnowingxT and its current
domain-clock count, the receiver can delay message processing ap-
propriately to ensure determinism. At each checkpoint, the pulses
temporarily stop while the counter is being reset.

This scheme requires a dedicatedIdle signal. If the transmitter
has no data to send, it cannot stop sending the clock pulses. In-
stead, it asserts the Idle signal and continues clocking. Overall, this
scheme is very inexpensive for point-to-point unidirectional buses.

However, consider a bus connecting several components. In the
schemes of Section 3.1, all components send theirxT or ρ over
the same wires — we size the number of wires forρ based on the
largestW of all the components. Unfortunately, forPulsing, we
need to allocate one pair of dedicated clock and Idle wires for each
component. The wires cannot be shared because the clock lines are
busy all the time.

3.3. Different Transmitter & Receiver Frequencies

We address the case when the transmitter frequencyfT and
the receiver frequencyfR are different by assuming a hypotheti-
cal transmitterT ′ associated with the true transmitterT (Figure 5).
T ′ cycles at the same frequency as the receiver and is perfectly syn-
chronized withT — there is no signal drift or jitter in their commu-
nication.
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Figure 5. Adding a hypothetical transmitter when transmitter
and receiver frequencies differ.

With this approach, any cycle counts inT are scaled to cycle
counts inT ′ using the ratio of frequencies:

nT ′ = dnT × fR/fT e (3)

Then, we take the analysis developed so far and reuse it for the com-
munication betweenT ′ andR, which cycle at the same frequency.
The values of all the input parameters (θ1, θ2, andW ) andρ are
given infR cycles.

We can use any of the schemes of Sections 3.1 and 3.2. For ex-
ample, if we use theFullCountscheme,T ′ hypothetically attaches
dxT × fR/fT e to every message.

If, instead, we use theOffsetor Pulsing schemes, we need a
translation table that maps cycle counts infT to cycle counts infR.
To see how this works, consider the Window Size, whose value in
ns is constant but whose value inT ′ andT cycles is different —
WT ′ andWT , respectively. To select the Window Size, we need
to find WT ′ andWT that are both integers and are related as per
WT ′ = WT × fR/fT . For this, we may need to select ak in
Equation 2 that is greater than one. Note that the valuesθ1, θ2, and
k in Equation 2 are cycle counts and, therefore, are different integer
values infT andfR cycles. After we findWT ′ andWT , we use
a lookup table with as many entries asWT . In each entryi, we
storej = di × fR/fT e. This table maps cycle counts in the two
frequencies. As an example, assume thatfT = 300 andfR = 500,
and that we end up settingWT = 6, andWT ′ = 10. The six entries
in the table contain[0, 2, 4, 5, 7, 9].



In Offset, we use this table to translate theρT that T attaches
to messages (in the example, 0, 1, 2, 3, 4, or 5) to theρT ′ thatT ′

hypothetically attaches to the same messages (0, 2, 4, 5, 7, or 9).
Conversely, inPulsing, the table contains the only cycle counts in
fR at whichT ′ hypothetically sends pulses.

This approach applies irrespective of which frequency is higher.
The case offR < fT requires that the transmitter does not transmit
all the time — otherwise, the receiver would overflow. It may result
in multiple T cycle counts being mapped into the sameT ′ cycle
count. This does not cause nondeterminism, as long as the messages
are queued and processed in order.

3.4. Hardware Implementation

Finally, we present an implementation of our approach. We fo-
cus on theOffsetscheme forfT 6= fR, since this is the most ad-
vanced and general scheme.

As indicated in Section 3.1, the receiver computes the cycle at
which to process a message with:

zR = b(yR − θ1 − ρR)/W c ×W + ρR + θ2 (4)

where all these parameters are given infR cycles. In particular, we
useρR to refer to the offset infR cycles.

Our design introduces logic in the bus interface of the receiver
(Figure 6). The logic performs two operations, namely translating
the ρT generated by the transmitter toρR, and computing Equa-
tion 4. We perform the first operation as outlined in Section 3.3,
using a small lookup table that is loaded at boot time. Placing the
table inR (leftmost part of Figure 6) frees theT from having to
know aboutR’s frequency.
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Figure 6. Implementation of theOffsetscheme when trans-
mitter and receiver frequencies differ.

To implement Equation 4, we use the rest of the hardware in
Figure 6. First, we readyR from the current value of the domain-
clock counter and computem = yR − θ1 − ρR. Then, to compute
q = bm/W c ×W , we save the value of the domain-clock counter
periodically at everyW cycles into a short circular queue. The
saving operation is triggered by an overflow signal from a modulo-
W counter. Theq value is the highest value in the circular queue
that is lower thanm. This operation requires a CAM search on
the queue. Fortunately, it can be shown that the number of queue
entries is small, as it is bounded by2 + dθ1/W e. Finally, we add
q + ρR + θ2 to obtainzR.

The resultingzR and the data coming from the bus are placed
into the Holding Queue. At all times, the value of the domain-clock
counter is compared to thezR of the entry at the head of the queue.
When both match, the entry at the head of the queue is processed.

4. CADRE Architecture

Figure 7 shows a computer augmented with the CADRE archi-
tecture and its determinism boundary. The example machine has
the board-level architecture of a typical Intel-based system. The
processor chip connects to a Memory Controller Hub (MCH) chip,
which manages memory accesses, refreshes, and integrity checks.
The MCH communicates with the IO Controller Hub (ICH), which
controls peripheral buses such as ATA and PCI.

Our system uses a multiprocessor chip with a single clock do-
main. The cores are connected by a fully-synchronous on-chip bus
and, therefore, core-to-core communications within the chip are as-
sumed deterministic. However, the buses connecting the processor
chip to the MCH, and the MCH to the memory modules and ICH
are source-synchronous and, therefore, nondeterministic.

CADRE consists of a set of architectural modules that ensure
deterministic execution. CADRE also leverages support for system
checkpointing and rollback as proposed elsewhere [16, 18]. Fig-
ure 7 shows the CADRE modules in a shaded pattern. In the fol-
lowing, we describe the architecture in detail.

4.1. Support for Deterministic Execution

4.1.1. Deterministic CPUs

To make each CPU deterministic, we require a means of set-
ting it to a known hardware state at every checkpoint. For that, we
save the architectural registers, flush the pipeline, and write back
and invalidate caches and TLBs. Then, we need to initialize all the
counters, buffers, and other state elements in the CPU to a known
state. Unfortunately, modern processors do not typically provide
this capability. Indeed, Dahlgrenet al. [7] observe that many flip-
flops can have different contents across different runs because of
non-deterministic initial values. Therefore, CADRE assumes the
existence of an instruction,DETRST, that initializes all these state
elements. The Pentium-M debugging platform [12] already pro-
vides the ability to reset certain state elements inside the processor.
Thus, we believe thatDETRSTcan be implemented in a production
processor with modest performance cost, and should need five to
ten cycles to reset all these processor structures [21].

CADRE augments the CPU with aCPU Logthat logs a variety
of events (Figure 7). These events are (i) clock duty cycle modula-
tion, (ii) voltage-frequency scaling, and (iii) nondeterministic inter-
rupts and exceptions generated inside the processor chip. Examples
of the latter are thermal emergencies and ECC failures due to soft
errors. Each entry in the log contains the value of the domain-clock
counter and an event descriptor. During re-execution, events in the
log are replayed to reproduce the events in the original execution.

Handling frequency scaling events requires additional steps.
This is because, when the frequency changes, many events in the
processor may become nondeterministic. In addition, the module
for bus determinism discussed in Section 3.4 needs to be informed.
Consequently, when the frequency needs to be changed, CADRE
updates the CPU Log and forces a checkpoint. After that, it changes
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Figure 7. Computer augmented with CADRE modules.

the frequency, informs the bus, and then restarts execution. This
scheme enables a deterministic replay.

4.1.2. Deterministic Memory System

A CADRE Controllerin the MCH ensures determinism in the
memory system (Figure 7). The controller makes memory refresh
deterministic by resetting the refresh logic at each checkpoint. In
this case, if all of the inputs to the memory controller are determin-
istic, the refresh logic will generate deterministic outputs. As long
as the checkpoint interval is long enough to allow at least one re-
fresh operation to complete per location, the DRAM will not lose
data.

To circumvent nondeterminism from memory scrubbing, the
CADRE Controller includes in the checkpoint the MCH register
that indexes the currently scrubbed line. When restoring the check-
point, the register is restored, enabling scrubbing to resume exactly
from where it was before the checkpoint.

4.1.3. Deterministic IO

Since IO devices are inherently nondeterministic, CADRE uses
a logging-based solution. Specifically, CADRE places a buffering
module in the MCH called theInput Log (Figure 7). The Input
Log records all the messages arriving from the ICH. In addition,
it also captures the interrupts that the ICH delivers to the MCH
and the non-deterministic interrupts that are generated in the MCH.
Each entry of the Input Log records the event and the domain-clock
count.

The Input Log obviates the need to checkpoint IO devices such
as network cards, sound cards, disk controllers, and graphics cards
connected to the ICH. When replaying an execution, the IO devices
can simply be suspended by gating their clock and disconnecting
them temporarily from the data bus. The Input log will reproduce
all of the signals that the I/O devices generated during the original
execution.

Unlike other IO devices, a graphics card is typically connected
directly to the MCH. In this case, CADRE can still treat it as an IO
device and therefore record inputs from it in the Input Log. Alter-
natively, if the graphics unit can be checkpointed, it can be treated
as a deterministic agent like a processor.

In Intel chipsets, the bus that carries data between the ICH and
the MCH is narrow — at most 16 bits [2]. Consequently, each entry
of the Input Log can be 48 bits wide: 16 bits of data and 32 bits

for the domain-clock timestamp. For space efficiency, rather than
logging the full 32-bit timestamp, we can log only the offset from
the previous logged timestamp.

4.1.4. Deterministic Buses

Section 3 proposed a mechanism to enforce determinism in
source-synchronous buses. The mechanism requires the module
shown in Figure 6 at the receiver side of a unidirectional bus. Since
the buses in our reference machine are bidirectional, CADRE needs
one such module at both ends of each bus. The module is shown as
Synchronizerin Figure 7.

At the beginning of each checkpoint interval, the CADRE Con-
troller in the MCH broadcasts aBUSRSTsignal that resets the
domain-clock counters in all the Synchronizers. This signal is sent
over the buses and may not reach all the Synchronizers at the same
absolute time. This is not a correctness problem. Instead, as indi-
cated in Section 3, it gives rise to thep andq terms of Equation 1,
which increase the latency of deterministic buses.

4.2. Checkpointing and Replay

For CADRE’s deterministic execution to be usable, CADRE
also needs to be able to checkpoint, rollback, and replay execu-
tion. To do so, CADRE can use a simplified version of the hard-
ware checkpointing mechanisms proposed for Revive [16] or Safe-
tyNet [18]. Specifically, at periodic times (e.g., every second),
CADRE checkpoints the machine by: (i) saving the architectural
registers, processor state registers, and message queues; (ii) writing
back and invalidating all caches and TLBs; and (iii) invalidating
predictor tables. As execution proceeds after the checkpoint, when
a main-memory location is about to be over-written for the first time
since the checkpoint, the old value of that location is saved in a
Memory Log. This is done in hardware by theMemory Log Con-
troller in the MCH (Figure 7). As discussed in [16, 18], this support
enables memory state rollback.

4.2.1. Checkpointing Protocol

CADRE’s checkpointing protocol is a variation of the clas-
sic Chandy–Lamport algorithm for checkpointing distributed sys-
tems [14] (Figure 8(a)). The CADRE Controller in the MCH co-
ordinates the two phases of the algorithm. In the first phase, it
broadcasts a message to all the agents in the determinism bound-
ary (typically the MCH and all the processors), asking them to stop
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execution. In the second phase, the agents checkpoint their state
and then reset it to a deterministic state. The detailed algorithm
follows.
Checkpoint Initiation. When the maximum time between check-
points elapses or one of the logs (CPU, Input, or Memory Log) be-
comes near full, the CADRE Controller initiates a new checkpoint
by sending theCKPT-PREPmessage to all agents. Upon receiving
CKPT-PREP, an agent suspends execution and sends aCKPT-RDY
message back to the MCH.
Wait State. The agent remains stopped and any incoming mes-
sages are queued. Meanwhile, the CADRE Controller is waiting to
receiveCKPT-RDYresponses from all agents. When it gets them
all, the Controller sendsCKPT-INIT to everyone.
Checkpoint State. When an agent has receivedCKPT-INIT on
all incoming buses, it enters the checkpoint state. It saves the archi-
tectural and processor state registers and the message queues which
contain data that has been accumulating since execution stopped. It
also writes-back and invalidates caches and TLBs, and invalidates
predictor tables. Finally, it executes theDETRSTinstruction to reset
the hardware. At this stage, it is possible to transfer the execution
to an RTL simulator by simply initializing the simulator state with
DETRSTand loading the checkpoint data.

When the agent finishes taking the checkpoint, it sends aCKPT-
DONEresponse to the CADRE Controller. After receiving all
the CKPT-DONEresponses, the CADRE Controller asserts the
BUSRSTsignal on all buses. In response, all agents reset their
domain-clock counters to zero and resume execution.

4.2.2. Replay Protocol

The replay protocol has three phases, namely checkpoint
restoration, deterministic replay, and return to normal execution
(Figure 8(b)).
Checkpoint Restoration. The CADRE Controller first saves
the current MCH domain-clock counter value in theReplay Stop
Marker register. Then, it sends theREPLAY-INIT message to
all agents. On message reception, agents restore the saved regis-
ters and message queues, invalidate (butnotwrite-back) caches and
TLBs, and executeDETRST. Each agent then freezes its pipeline
and sendsREPLAY-RDYto the MCH. On receivingREPLAY-RDY
from all agents, the CADRE Controller reads the Memory Log and
restores memory to the previous checkpoint. Finally, it asserts the
BUSRSTsignal. Upon seeing theBUSRSTsignal, all agents re-

set their domain-clock counters and resume computing, therefore
replaying the execution.
Deterministic Replay. The MCH behaves just as during normal
execution except that IO inputs are replayed from the Input Log
and IO outputs are discarded. IO devices are completely isolated
from the system. A supervisor unit in each processor plays back
the CPU Log, reproducing the clock duty cycle modulation events,
voltage-frequency scaling events, and nondeterministic interrupts
and exceptions that occurred during the original execution. We as-
sume that no unexpected thermal emergencies occur during replay
— since we are replaying the execution deterministically, the ther-
mal profile of the re-execution follows that of the original one.
Return to Normal Execution. When the MCH domain-clock
counter reaches the value stored in the Replay Stop Marker reg-
ister, the deterministic replay is complete. CADRE switches back
to Normal mode and the IO devices are reconnected.

5. Evaluation

Rather than evaluating CADRE with a traditional simulation ap-
proach, we estimate its performance and storage overheads through
measurements on a real, non-CADRE system. A key benefit of this
approach is the ability to run real programs to completion. A short-
coming is that some CADRE overheads are not modeled and that
validation of the proposed algorithms and techniques is not as thor-
ough.

We take an Intel server and estimate the main CADRE perfor-
mance and storage overheads. Specifically, we measure the per-
formance overhead of (i) periodic cache and TLB writeback and
invalidation, and (ii) longer main memory latencies (which would
be caused by the bus synchronizers). These are the main CADRE
performance overheads. Less important CADRE performance over-
heads that are not measured include (i) the periodic invalidation
of branch predictors and potentially similar structures, and (ii) the
memory logging of first writes. Such logging has been shown to
have negligible overhead in [16, 18] because it is not in the critical
path of execution.

To estimate storage overheads, we measure the rate of IO input,
which determines the size of CADRE’s Input Log. To estimate the
size of CADRE’s Memory Log, Section 5.1 discusses the results
reported in the literature for checkpointing schemes. Finally, the
size of CADRE’s CPU Log is negligible because it stores only rare
events.
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Table 1 shows the characteristics of the server measured and
the applications executed. SPECweb and SPECjbb use Sun’s JDK
1.5. SPEComp is compiled with Intel’s C and FORTRAN compil-
ers with –O2. SPECint and SPECfp are compiled with gcc and f77
with –O3. SPECweb is excluded from the performance experiments
because its response time varies greatly from run to run even on the
base unmodified hardware — it is therefore difficult to separate es-
timated CADRE slowdowns from the noise. In our experiments,
for each of the SPEComp, SPECint and SPECfp suites, we run all
the applications in the suite in series and report the overall results.
Thegalgelapplication from SPEComp is excluded from our exper-
iments because it generates runtime errors on our machine.

Server Measured
Dual-processor 2.8 GHz Pentium-4 Xeon server with Hyperthreading

(4 hardware threads total)
Per-processor L2 cache: 1 MB
Main memory: 2 GB of DDR2-400 SDRAM
Chipset: Intel E7525 with 800 MHz front side bus
OS: SuSE Linux 9.3 with 2.6.11 kernel
Workloads Executed
SPECweb2005: Enterprise webserver running Apache 2.0 with 500

clients. It performs intensive network and disk IO, but it is
CPU bound. Used in the IO experiments only

SPECjbb2005: Enterprise Java middleware with very little IO
SPEComp2001: Parallel scientific applications in C or FORTRAN

with OpenMP parallelization pragmas
SPECint2000 and SPECfp2000: CPU-intensive sequential codes

Table 1. Experimental setup. In the plots, we label the work-
loadsWEB, JBB, OMP, INT, andFP.

In the following, we first measure the space and performance
overheads, and then address related issues.

5.1. Space Overhead

The two main storage overheads in CADRE are the Input Log
and the Memory Log. To estimate the size of the former, we peri-
odically poll the Linux kernel for disk, network card, and interrupt
controller transfer rates as the workloads run. Recall that CADRE
only needs to loginput IO.

Figure 9 shows the average data rate for each of the three in-
put IO sources and each workload. Figure 10 shows the peak rate,
measured over 100 ms intervals. The figures show that the sus-
tained input rate is quite low, even for SPECweb. The peak rate,
however, is much higher. The highest rates are seen during appli-
cation startup. From these figures, we conclude that if we wish
to provide a one-second replay interval for these workloads during
startup, we must buffer approximately 64MB of input IO data; for a

one-second of steady state, the requirement for the workloads other
than SPECweb is 100KB.

We cannot easily use our experimental setup to estimate the
size of CADRE’s Memory Log. Consequently, we report results
from checkpointed systems in the literature that similarly log in
memory on first write. Specifically, SafetyNet [18] logs on aver-
age 50MB/s per processor for the most memory-intensive workload
(SPECjbb) [22]. The authors simulate 4GHz single-issue in-order
processors. ReVive [16] generates a maximum log of 125MB/s per
processor for the most memory-intensive workload (FFT) — and,
on average for all the applications, a maximum log of 38MB/s. The
authors simulate 1GHz 6-issue out-of-order processors.

These log rates are conservative for CADRE because they were
measured for short checkpoint intervals (330ms and 10ms). First-
write log storage overhead increases sublinearly as we increase the
checkpoint interval to CADRE’s one second. Moreover, logs can
use compression to reduce their size to less than half [22]. Overall,
if we assume a rough figure of 50MB/s per processor, our four-core
machine would require 200MB to support a one-second checkpoint
interval. While exact space overhead numbers will vary depending
on workload, processor, memory, and IO system, both the Input and
Memory Log in CADRE have tolerable sizes.

5.2. Performance Overhead

As indicated before, the two main performance overheads in
CADRE are the periodic cache and TLB writebacks and invalida-
tions, and the longer main memory latencies induced by the bus
synchronizers. To estimate the first overhead, we develop a ker-
nel module that periodically executes theWBINVD instruction on
all processors. Such instruction forces the writeback and invalida-
tion of all on-chip caches and TLBs. We vary the frequency of
WBINVD execution. Our results show that, with one-second in-
tervals between executions, the performance overhead is negligible
for all workloads. Even for intervals of 100ms, the overhead is less
than 1%. Consequently, for the one-second CADRE checkpoints,
this operation has no performance impact.

Consider now the latencies due to the bus synchronizers. Sec-
tion 3 showed that the maximum delay that the bus synchronizer
adds to a message to ensure determinism is equal to the bus Un-
certainty Interval (θ2 − θ1). As per the HyperTransport protocol
for very short buses [11], we assume an Uncertainty Interval equal
to one for our buses. In a round trip from processor to memory,
there are four accesses to source-synchronous buses. With an MCH
running at 800MHz, this amounts to adding, in the worst case, four
800MHz cycles or 14 processor cycles. Consequently, in the worst



case, CADRE adds 14 processor cycles to a round trip that takes
≈ 200 cycles.

To estimate the impact of this additional latency, we program
the MCH to add 14, 28, 42, or 56 processor cycles to the memory
latency. We do this by increasing the programmable read pointer de-
lay, the RAS–CAS delay, and the clock guard band in the MCH [3].
Figure 12 shows the resulting slowdown of the workloads for the
different memory latency increases. The figure shows that the in-
creased latency has a small but measurable effect. If we consider
the most realistic latency increase, namely 14 cycles, we see that
the overhead is 1% or less for all workloads.
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5.3. Comparison to the State of the Art

We now compare CADRE to the state-of-the-art in cycle-
deterministic systems. The state of the art is represented by Golan,
a hardware testbed used to debug the Pentium-M processor [12].
Golan attaches a logic analyzer to the pins of the processor chip.
Every input signal (address, data, and control) arriving at the pins
is logged along with the clock cycle count. Periodically, Golan
takes a checkpoint, which involves writing back and invalidating
caches and TLBs, saving the processor registers, and performing a
DETRST-like operation to reset the processor state. Upon detec-
tion of a failure, Golan restores a checkpoint and re-starts execution
while replaying the logic analyzer log.

Although Golan also provides additional capabilities such as
signal injection (useful for emulating I/O devices) and shmoo au-
tomation, we use it as an archetype of an approach to support cycle-
determinism that we callBusSnoop. In BusSnoop, a buffering de-
vice snoops the pins of the processor chip and logs all the incoming
events. Table 2 compares CADRE toBusSnoop.

Characteristic CADRE BusSnoop
Hardware Complexity Moderate High
Replay Distance High Low
Storage Needed Low High

Table 2. Comparing CADRE to the state of the art in cycle-
deterministic systems.

We argue that CADRE substantially reduces the hardware com-
plexity relative to BusSnoop. In BusSnoop, the buffering device
interfaces to the high-frequency processor pins, which requires so-
phisticated signal tapping support. Alternatively, if the tapping oc-
curs on the bus inside the chip, BusSnoop may require additional

chip pins to dump on the fly the state that is being collected. In-
stead, CADRE buffers state at MCH/memory speeds (the Memory
Log) or IO speeds (the Input Log), which is much simpler to imple-
ment. CADRE adds the CADRE Controller and bus synchronizers,
which we believe have modest complexity. Finally, both CADRE
and BusSnoop need similar hardware to ensure CPU determinism,
which includes a mechanism like the CPU Log and appropriate RTL
design of the CPU (Section 2.1). Overall, we feel that the reduc-
tion in hardware complexity is an important issue, especially as we
suggest incorporating CADRE into systems deployed in the field
(Section 5.4).

For a fixed storage requirement, CADRE is able to replay a
much longer execution than BusSnoop. This is because BusS-
noop needs to log much more information. Specifically, consider
a 200MB log. As indicated in Section 5.1, this is our estimate of
the size of the CADRE Memory Log needed to support one-second
replays in our machine. To a first approximation, we neglect the
Input Log requirements because, after program startup, they typi-
cally amount to noise over the Memory Log. On the other hand,
BusSnoop fills 200MB very quickly. To see why, consider Fig-
ure 11, which shows theinput data rates in the front side bus for
each workload. These results are obtained with VTune [1]. These
rates are typically 1-2 GB/s, with SPECjbb generating 2.03 GB/s.
Let us assume that a BusSnoop log entry stores a 32-bit timestamp
and a 64-bit data field. If we run SPECjbb, a 200MB buffer fills
in only (200MB/s/2.03GB/s) × 2

3
≈ 66ms. Consequently, BusS-

noop’s replay period is shorter.
Finally, from the previous discussion, we see that to support the

same replay distance, CADRE needs much less log storage than
BusSnoop. More specifically, BusSnoop’s storage size is propor-
tional to the duration of the period we want to replay. On the other
hand, CADRE’s Memory Log size increases only sublinearly with
time because first-writes become less frequent with time. In fact,
CADRE can support even an almost unbounded replay period with
a checkpoint storage size equal to the memory size. In this case, we
save the whole memory state to disk and run CADRE without Mem-
ory Log. CADRE then only needs to log IO. With IO bandwidth on
the order of 100KB/s, the Input Log for a one-hour execution totals
only 360MB, which comfortably fits in a dedicated DRAM buffer.

5.4. Using CADRE

Finally, we examine how to use CADRE. Typically, we use
CADRE to replay after a hardware fault is found. In this case, the
Memory Log and a register checkpoint are used to restore a check-
pointed state. Then, re-execution proceeds by replaying the Input
and CPU Logs. Test access ports (e.g., JTAG) are used to read data
out of each component. To examine the microarchitectural state
in more detail, it is possible to transfer the checkpointed state and
logs to a logic simulator. Using the simulator, an engineer can view
any waveform in the system. This dump-to-simulator technique is
identical to that used in existing systems.

As indicated in Section 5.3, CADRE can be made to support
almost unbounded replay periods. This is done by copying the
contents of the main memory to a reserved block of “checkpoint”
DRAM or to disk, and executing without generating any Memory
Log. CADRE can then potentially execute for hour-long periods.
This enables schemes for detecting long-latency faults, such as run-
ning periodic self-consistency checks in software.



The original motivation for CADRE was to develop a mech-
anism to assist in system bring-up and test. However, given
CADRE’s modest overheads, we propose to incorporate it in de-
ployed systems as well. Deploying CADRE in production systems
provides hardware vendors with a powerful tool to debug customer-
site failures. The customer could send the CADRE checkpoint
preceding the crash to the vendor, who could then use it to repro-
duce the fault exactly using in-house hardware and simulators. The
checkpoint includes memory state and Memory Log, the check-
pointed register state, and the Input and CPU Logs. The idea is
similar to the current use of software crash feedback agents that
help software developers identify bugs in deployed software.

6. Related Work

Removing Sources of Nondeterminism. Mohanram and
Touba [15] look at the problem of deterministic transmission over
source-synchronous buses for the case when the bus clock rate is
faster than the core clock rate of the receiver. They propose a slow
trigger signal that is synchronized with both clocks. The transmit-
ter and receiver ensure determinism by synchronizing the times of
message transmission and reception with the trigger signal.

For globally-asynchronous locally-synchronous clock domains,
the Synchro-tokens [9] scheme was recently proposed. In this
scheme there are handshake and data signals that are synchronized
with each other. After a clock domain receives a handshake sig-
nal, it starts its clock, processes the data, and then pauses its own
clock. Buses connecting clock domains achieve less than half the
throughput, and incur a latency that is at least four times that of
synchronous buses. Lastly, this scheme is prone to deadlocks.
Using Logic Analyzers to Log Signals. The most related work
is the work on the Golan platform for the verification of Pentium-
M [12] (explained in Section 5.3). It uses logic analyzers like the
Agilent-8045 [19] to log all the inputs at the processor’s pins. The
logic analyzer saves the value of the signal along with the clock cy-
cle at which it was latched into the domain of the core clock or bus
clock. A typical logic analyzer has 64 channels and logs around
64MB worth of data. It has sophisticated interfaces to view and an-
alyze the data. The Golan platform also has a mechanism to transfer
the state to an RTL simulator for further debugging.

Tsaiet al.[20] propose a scheme to provide deterministic replay
for real-time programs. They start out with two processors running
in lockstep. Upon a triggering condition or periodically, the sec-
ond processor freezes itself and hence, it contains the checkpointed
state. After that, a logic analyzer starts logging all the signals, in-
terrupts, traps, and exceptions on the processor memory bus, which
can be used to replay the execution from the checkpointed state.

7. Conclusions

This paper presented a cost-effective architectural solution to the
problem of cycle-accurate deterministic execution on a board-level
computer. We characterized the sources of nondeterminism in cur-
rent computers and showed how to address them. In particular, we
presented a novel technique to circumvent one of the most diffi-
cult sources of nondeterminism, namely the timing of messages on
source-synchronous buses crossing clock-domain boundaries. The
proposed solution completely hides this nondeterminism at the cost
of a small latency penalty and modest hardware.

Extending a four-way multiprocessor server with the resulting
CADRE architecture enables cycle-accurate deterministic execu-
tion of one-second intervals with modest buffering requirements
(around 200MB) and minimal performance loss (around 1%). The
intervals with deterministic execution can be extended to minutes
and logging overhead will remain reasonable for many workloads.
Such long intervals are a substantial improvement over the tens
of milliseconds between checkpoints in current schemes. Overall,
CADRE significantly enhances hardware debugging. Moreover, its
cost-effectiveness may enable its use in systems in the field.
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